Name of the Faculty	:	Smt. Anita Kumari			
Discipline	:	Electronics and Communication Engg.			
Semester	:	IIIrd			
Subject	:	DIGITAL ELECTRONICS			
Lesson Plan Duration	:	Sep2022			
Work Load (Lecture/ Practical) per week (in hours): 03 HOURS (Lecture)					

Week Theory **Practical** Topic (including assignment/ test) Lecture Topic day Introduction about 1 Introduction about subject. instruments to be Distinction between analog and digital signal. Applications used in practical 1 st 2 and advantages of digital signals. work. 3 Binary, octal and hexadecimal number system. Conversion from decimal and hexadecimal to binary and Verification and 4 vice-versa. interpretation of truth tables for Binary addition and subtraction including binary points. 1's 5 AND, OR, NOT and 2's complement method of addition/subtraction. NAND. NOR and 2nd Exclusive OR Concept of code, weighted and non-weighted codes, examples of 8421, BCD, excess-3 and Gray code. (EXOR) and 6 Exclusive NOR(EXNOR) gates Concept of parity, single and double parity and error Realisation of logic 7 detection functions with the Concept of negative and positive logic help of NAND or 3rd 8 NOR gates Definition, symbols and truth tables of NOT, AND, OR, 9 NAND, NOR, EXOR Gates To design a half 10 NAND and NOR as universal gates. adder and 11 Introduction to TTL and CMOS logic families full adder using XOR and NAND 4th gates and 12 Postulates of Boolean algebra, De Morgan's Theorems. verification of its operation. Verification of truth 13 Implementation of Boolean (logic) equation with gates table for positive 5th Karnaugh map (upto 4 variables) and simple application in edge triggered, 14 developing combinational logic circuits

	15 16	 Half adder and Full adder circuit, design and implementation. 4 bit adder circuit Four bit decoder circuits for 7 segment display and 	negative edge triggered, level triggered IC flip- flops (At least one IC each of D latch , D flip-flop, JK flip- flops). Verification of truth table for encoder and decoder ICs.	
6 th	17 18	decoder/driver ICs. Basic functions and block diagram of MUX and DEMUX with different ICs		
7 th	19	Basic functions and block diagram of Encoder	Verification of truth table for Mux and DeMux	
	20	Concept and types of latch with their working and applications		
	21	Operation using waveforms and truth tables of RS, T, D F/F.		
8 th	22	Master/Slave JK flip flops. Race around condition.	To design a 4 bit SISO, SIPO, PISO, PIPO shift registers using JK/D flip flops and verification of their operation.	
	23	Difference between a latch and a flip flop		
	24	Introduction to Asynchronous counters.		
	25	Introduction to synchronous counters.	To design a 4 bit ring counter and	
9 th	26	Binary counters	verify its operation.	
	27	Divide by N ripple counters		
10 th	28	Decade counter, Ring counter	Use of Asynchronous Counter ICs (7490 or 7493)	
	29	Introduction and basic concepts including shift left and shift right.		
	30	Serial in parallel out, serial in serial out shift register.		
11 th	31	Parallel in serial out, parallel in parallel out shift register.	Viva of Performed Practical.	
	32	Universal shift register	i iucucui.	
	33	Working principle of A/D converters		
12 th	34	Brief idea about different techniques of A/D conversion and study of : Stair step Ramp A/D converter		

	35	Dual Slope A/D converter	Viva of Performed	
	36	Successive Approximation A/D Converter	Practical.	
	37	Working principle of D/A converters	Viva of Performed Practical.	
13 th	38	Binary Weighted D/A converter		
	39	R/2R ladder D/A converter		
	40	Applications of A/D and D/A converter.	Viva of Performed Practical.	
14 th	41	Memory organization, classification of semiconductor memories		
	42	RAM, ROM, PROM, EPROM, EEPROM, static and dynamic RAM		
	43	introduction to 74181 ALU IC	Final Internal Viva	
15 th	44	Revision	of all Practical.	
	45	Revision		